
A Design Methodology for Stealthy Parametric

Trojans and Its Application to Bug Attacks

Samaneh Ghandali1, Georg T. Becker2, Daniel Holcomb1, and Christof Paar1,2

1 University of Massachusetts Amherst, Amherst, USA

2 Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum, Bochum, Germany

August 19, 2016

CHES 2016 - Santa Barbara, CA

Motivation: Hardware Trojans

 Many potential attack vectors

 Malicious foundry/company

 Malicious employee

 3rd party IP cores

 Government request

 Hacker attacks

 …

S. Ghandali, CHES 2016, Aug 19, 2016 2

Criminals

Hacktivists

State actors

Motivation
 Small changes at certain points can break/weaken crypto

 RNG [Becker et al, CHES 2013]

 Bug Attack [Biham et al, CRYPTO 2008 and Journal of Cryptology 2015]

 So, why do we trust our chips to function as intended?

 They seem to do right thing for any practical # of operations [[FPDIV, Edelman,

SIMA 1997].

 The logic gates appear correct.

 In this work, we will show that even if logic gates appear correct, and

circuit usually does right things, Trojans can still exist.

3

Outline

 Introduction

 Path delay fault (PDF)

 Creating a stealthy PDF

 Phase I: Path Selection

 Phase II: Delay Distribution along path

 Bug Attack on ECDH

 Conclusion

4S. Ghandali, CHES 2016, Aug 19, 2016

Why Design Trojans?

 Trojan detection and design are closely related

 To design effective detection mechanisms, we need an

understanding of how Hardware Trojans can be built.

 We examine how particularly stealthy parametric Trojans can be

introduced to a target circuit.

5S. Ghandali, CHES 2016, Aug 19, 2016

Motivating Example: Bug Attacks

 Setting: RSA digital signature running on server or embedded device

 Secret key k leaks if there is ONE fault in multiplication

during exponentiation mk mod n.

[Biham, Carmeli, Shamir , CRYPTO 2008 & Journal of Cryptology 2015]

 Research Challenge: Low-level manipulation of integer multiplier such that

message m

Sig = mk mod n

Sig

6

message m

Sig' = mk mod n

Sig'
faulty sig' leaks k via

Chinese reminder theorem

= C almost all inputs

= C a few poisonous inputs A', B'
A * B

/

S. Ghandali, CHES 2016, Aug 19, 2016

Path Delay Fault

 Stuck-at fault model: easily detected and not rare

 Path delay fault model:

S. Ghandali, CHES 2016, Aug 19, 2016 7

00

00

00

00

Input vectors Correct output Faulty output

01001 → 01101 1→ 0 1→1

11

11

Delay-based Trojan

 Two properties for a viable delay-based Trojan:

 Triggerability: For secret inputs, which are known to the

attacker, cause an error with certainty or relatively high

probability.

 Stealthiness: For randomly chosen inputs, cause an error with

extremely low probability.

8S. Ghandali, CHES 2016, Aug 19, 2016

Outline

 Introduction

 Path delay fault (PDF)

 Creating a stealthy PDF

 Phase I: Path Selection

 Phase II: Delay Distribution along path

 Bug Attack on ECDH

 Conclusion

9S. Ghandali, CHES 2016, Aug 19, 2016

Proposed method for creating a stealthy PDF

 Phase I: Path Selection

 Finding a rarely sensitized path

 Selection guided by Controllability and

Observability metrics from testing

 SAT-based check ensures path is sensitizable.

10

 Phase II: Delay Distribution

 Decide where on rare path to add delay

 Increase the delay of the rare path to occur a PDF

 Stealthiness problem: Cause faults on intersecting

paths if not assigning delay carefully.

 Using Genetic Algorithm to choose delay of each

gate of the rare path

Netlist of Multiplier

Controllability &

Observabilty

SAT ?

Rare Path
Check sensitization

using SAT Problem

Genetic Algorithm

Rare ?

Rare PDF

Fault Simulation

Finding a rarely sensitized path

 Path π is seeded with a single hard to sensitize transition

 Extend π backward until reaching primary inputs

 Extend π forward until reaching primary outputs

 SAT-check ensures that π remains sensitizable each time π is extended.

 Also produces vector pair (Poison Inputs) that can be used to trigger the fault

11S. Ghandali, CHES 2016, Aug 19, 2016

3 4

5 6

7

8

9..
.10 11

12

13

1514

21

..
.

..
.

..
.

..
.

3 4

5 6

7

8

9..
.10 11

12

13

1514

21

..
.

..
.

..
.

..
.

3 4

5 6

7

8

9..
.10 11

12

13

1514

21

..
.

..
.

..
.

..
.

3 4

5 6

7

8

9..
.10 11

12

13

1514

21

..
.

..
.

..
.

..
.

3 4

5 6

7

8

9..
.10 11

12

13

1514

21

..
.

..
.

..
.

..
.

3 4

5 6

7

8

9..
.10 11

12

13

1514

21

..
.

..
.

..
.

..
.

Path Selection Example: 3-bit Wallace Tree Multiplier

12

3 4

5 6

7

8

9..
.10 11

12

13

1514

21

..
.

..
.

..
.

..
.

Node Cont-0 Cont-1 Obs

1 0.5 0.5 0.37

2 0.5 0.5 0.42

3 0.75 0.25 0.61

4 0.75 0.25 0.61

5 0.93 0.07 0.67

6 0.63 0.37 0.81

7 0.81 0.19 0.89

8 0.84 0.16 0.61

9 0.97 0.03 0.66

10 0.91 0.09 0.79

11 0.66 0.34 0.97

12 0.98 0.02 0.74

13 0.89 0.11 0.81

14 0.97 0.03 0.94

15 0.77 0.23 1

Initial Point

of Path π

Going

Backward

Going

Forward

3 4

5 6

7

8

9..
.10 11

12

13

1514

21

..
.

..
.

..
.

..
.

Unsatisfiable

Rare path π : 1↓, 3↓, 6↓, 11↓, 12↓, 13↓, 15↑Rare path π : 1↓, 3↓, 6↓, 11↓, 12↓, 13↓, 14↓Rare path π : 1↓, 3↓, 6↓, 11↓, 12↓, 13↓Rare path π : 3↓, 6↓, 11↓, 12↓Rare path π : 1↓, 3↓, 6↓, 11↓, 12↓Rare path π : 6↓, 11↓, 12↓Rare path π : 11↓, 12↓Rare path π : 12↓

Evaluation of Path Selection

Fault simulation of rare path

and 750 random paths of 32-

bit Wallace tree multiplier.

13

0

10

20

30

40

50

60

N
u
m

o
f

R
a
n
d
o
m

 P
a
th

s

0
1
2
3
4
5
6

RP

Path selection algorithm finds a path that is much rare than the random search.

Error rate

Proposed method for creating a stealthy PDF

S. Ghandali, CHES 2016, Aug 19, 2016 14

Netlist of Multiplier

Controllability &

Observabilty

SAT ?

Rare

Path

Check sensitization

using SAT Problem

Genetic Algorithm

Rare ?

Rare PDF

Fault Simulation

Phase I: Path Selection

Phase II: Delay Distribution

Delay Distribution Along Chosen Path

 Delay of the path is increased so that it will exceed the clock period and an

error will occur when the path is sensitized

 Where on path to increase delay?

 Stealthiness problem: additional delay can cause errors on paths that intersect

or overlap with chosen path

 We want to minimize it

 Genetic Algorithm is used to decide the delay of each gate to cause a PDF

which is triggered by poison inputs but rarely triggered by other inputs

 Fitness function of GA is empirical probability from simulation of causing an error

when random input vectors are applied to the circuit
15

Delay Distribution Example:

 Distributing a delay of 30 units on the selected path:

 Without GA:

 Using GA:

S. Ghandali, CHES 2016, Aug 19, 2016 16

0

10

10

10

0

0

30

the Probability of detection is 0.22

the Probability of detection is 0.16

0

Evaluation of Delay Distribution

 Error probability of circuit before and after optimizing delay assignment of rare

path and 9 other best ones in a 32 × 32 Wallace tree multiplier.

 GA reduces number of faults, while not affecting triggerability.

17S. Ghandali, CHES 2016, Aug 19, 2016

0

2

4

6

8

10

12

RP P1 P2 P3 P4 P5 P6 P7 P8 P9

P
er

ce
n

ta
g

e
o

f
in

p
u

ts
 t

h
a

t

ca
u

se
 e

rr
o

r
(
×

0
.0

0
1

) Uniform GA

Path delay = 3276 ps

Clock Period = 2530 ps

Overall Evaluation

18

Probability

Uniform Delay Distribution 0.0003 (57/200k sim. vectors)

Genetic Algorithm <2-26 (0/260M sim. vectors)

 Clock period usually significantly longer than critical delay

 Even when path delay far exceeds nominal critical path, errors are still very rare.

 Nominal critical path is 2520 ps. If rare path gets delay 2530ps, how often does

circuit delay exceed 2520ps?

Nominal critical path 2520 ps

Clock period 2800 ps

Delay of rare path after modification 3150 ps

Probability of output error 2-25.25

 Now we have a stealthy

triggerable fault for bug attack

Outline

 Introduction

 Path delay fault (PDF)

 Creating a stealthy PDF

 Phase I: Path Selection

 Phase II: Delay Distribution along path

 Bug Attack on ECDH

 Conclusion

19S. Ghandali, CHES 2016, Aug 19, 2016

ECDH Algorithm

 Elliptic Curve Diffie-Hellman Key Exchange (ECDH) between C and S

S. Ghandali, CHES 2016, Aug 19, 2016 20

Client C

KC ← {2, 3, …, #E -1}

QC ← KC . G

Server S

KS ← {2, 3, …, #E -1}

QS ← KS . G

QC

QS

R ← KC . QS = KC . KS . G R ← KS . QC = KS . KC . G

Bug Attack on ECDH with Montgomery Ladder

 Main idea:

 Send a poisonous point Qc so that an error occurs if the most

significant unknown key bit is 1 (or 0)

 Attacker learns one key-bit per message

 Problem:

 Handshake needs to be completed to detect an error

 Point Qc cannot be arbitrarily chosen

 Therefore attack complexity very high to search for a fitting Qc

 Solution:

 We specifically target Montgomery Ladder step

 Introduce a one-time only pre-computation step to find a set of

“good” points

 Attack much more reasonable since the computation complex part

only needs to be done once per curve parameters and Trojan

21

Attack complexity

22S. Ghandali, CHES 2016, Aug 19, 2016

Failure probability

(of one multiplication)

2-64 2-48 2-32

Precomputation complexity

(point additions)

267 251 235

Storage requirements 14 PB 55 TB 215 GB

Attack complexity

(Montgomery Ladder steps)

247 239 231

Target: 256-bit ECDH with Montgomery Ladder scalar multiplication

Conclusion

 Introducing a new type of parametric hardware Trojans based on rarely-

sensitized path delay faults.

 Presenting a SAT-based algorithm which searches the circuit for paths that are

extremely rarely sensitized.

 Presenting a delay distribution method using Genetic Algorithm

 Modifying a 32-bit multiplier so that for extremely rare inputs faulty responses

are computed.

 Bug attack against ECDH implementation.

23S. Ghandali, CHES 2016, Aug 19, 2016

Thank You!

Attack complexity

24S. Ghandali, CHES 2016, Aug 19, 2016

Failure probability

(of one multiplication)

2-64 2-48 2-32

Precomputation complexity

(point additions)

267 251 235

Storage requirements 14 PB 55 TB 215 GB

Attack complexity

(Montgomery Ladder steps)

247 239 231

Target: 256-bit ECDH with Montgomery Ladder scalar multiplication

Sasdrich et al. [22] can compute roughly 2^40 Montgomery ladder steps per

second on a Zynq 7020 FPGA (curve 25519

Computation complexity in the seconds for the attack

Precomputation possible for well-funded adversaries

